

A Survey on Malicious and Selfish Nodes in Mobile Ad Hoc Networks

Prof. Sweta Kriplani, Rupam Kesharwani

Shri Ram Institute of Technology, Jabalpur, Madhya Pradesh, India

ABSTRACT

MANETs are alluring innovation for some applications, for example, salvages operations, strategic operations, ecological observing, meetings, and so forth. Notwithstanding, performing system capacities devours vitality and different assets. To spare its vitality a hub may carry on egotistically and uses the sending administration of different nodes without effectively can extremely corrupt the execution at the steering layer. In particular, nodes may take an interest in the course disclosure and support transform yet decline to forward information parcels. In this overview different routines for recognizing egotistical nodes are talked about with their key focal points. In addition a standout amongst the most essential perspectives is to propose particular conduct design creation that would let to assess neighbour conduct; I reviewed the key calculations for developing conduct design for the neighboring nodes in MANETs. In the literature there are many methods which deal with the selfish behaviour of the nodes. This paper compares different methods available for reducing the effect of selfish nodes in mobile ad hoc networks.

Keywords: Mobile Ad Hoc Networks, Routing Misbehavior, Selfishness, Network Security.

I. INTRODUCTION

Mobile ad-hoc networks (MANETs) allow for remote devices to frame a system without the requirement for focal foundation [1]. While the absence of requirement for base permits the system to be exceptionally additionally steering adaptable, makes discriminating concern in the system. The information accumulation part is in charge of gathering and prepreparing information undertakings: exchanging information to a typical organization, information stockpiling and sending information to the discovery module. In impromptu remote systems every PC with a remote interface can communicate directly with participating nodes. These nodes can self-arrange without focal administration and extraordinary infrastructure [2][3]. The system is built up utilizing (restricted extent) radio correspondence where every hub goes about as both information terminal and information exchange hardware. Besides, nodes can move openly bringing about changes to the system topology and overhauled directing to forward the bundles. The topology change relies on upon distinctive variables, for example, versatility model, hub speed and so forth. Because of the foundation less nature of MANETs parcels sent between removed nodes are relied upon to be handed-off by middle of the road ones [3], which go about as switches and give the sending administration. The sending administration is firmly identified with the steering. It comprises in accurately transferring the got bundles from hub to hub until coming to their last destination, taking after courses chose and kept up by the directing convention [3]. These administrations (directing and information sending) together are at the center of the system layer. The way of MANET makes participation among nodes fundamental for the framework to be operational. In some MANET's applications where all nodes fit in with a solitary power (in the application layer perspective) and have a typical objective, e.g.- officers in a military unit amid a front line or rescuers in a salvage group amid a salvage operation, nodes are helpful by nature[2][3]. However, in many civilian applications, such as networks of cars and provision of communication facilities in remote areas, nodes typically do not belong to a single authority and do not pursue a common goal. In such networks,

forwarding packets for other nodes is not in the direct interest of anyone, so there is no good reason to trust nodes and assume that they always cooperate. In MANETs critical functions like routing and forwarding performed by less trusted and less secured nodes. Indeed, nodes try to preserve their resources, and particularly their batteries [4].

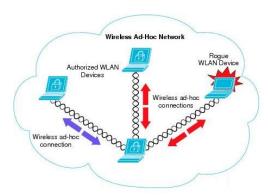


Figure 1: Mobile Adhoc Network

An individual mobile node may attempt to benefit from other nodes, but refuse to share its own resources. Such nodes are called selfish or misbehaving nodes and their behavior is termed selfishness or misbehavior. Intentionally uncooperative behavior (misbehavior) may result in a total communication breakdown. A node may behave selfishly by agreeing to forward the packets and then failing to do so due to Overloaded, Selfish, Malicious or Broken. Behavior node models Collaborative model: A node that behaves properly executing both packet forwarding and routing functions. Selfish model: A node that misbehaves to save its battery life. This node could disable packet forwarding and/or routing functions.

II. METHODS AND MATERIAL

1. Related Work

A. Credit Based Methods

Credit based methods are also called as incentive based methods. In these methods selfish nodes are not punished instead unselfish nodes are rewarded for helping other nodes. This stimulates the cooperation of nodes in the network. This section discusses some of the credit based systems in the literature.

B. Secure Incentive Protocol

This approach assumes that each mobile node (MN) has a tamper-proof security module such as SIM cards in GSM networks, which deals with security related functions and each intermediate node (IN) puts nonforged stamps on the forwarded packets as a proof of forwarding[2]. Secure Incentive Protocol, (SIP) uses "credits" as the incentives to stimulate packet forwarding. For this purpose, each smartcard has a credit counter (CC) which is pre-charged with a certain amount of credits before shipped out[2][3]. The charging and rewarding on a node is done by decreasing or increasing the CC in that node and the CC will retain its value even when the MN is power off. When the MN is power-on again, it could still reuse the credits in the CC even in another SIP-enabled ad hoc network. To guarantee the security of SIP, each smartcard contains a private number and a public number (keys). The nodes have no knowledge about the keys stored in the smartcard and could not change CC in an unauthorized way either. SIP is session-based and mainly consists of three phases. During the first Session initialization phase, a session initiator (SI) negotiates session keys and other information with a session responder (SR) and INs between them. And each IN puts a non-forged stamp on each data packet forwarded and SI/SR collect those stamps for later rewarding use in the next Data forwarding phase[2]. The final phase is Rewarding phase, in which each IN is awarded a certain number of credits based on the number of forwarded packets. Advantages of this method are 1. SIP is routing- independent in the sense that it could coexist with any on-demand unicast routing protocol such as DSR and AODV. 2. SIP is session based rather than packet based. 3. Security module is tamper proof and hence unauthorized access is not allowed. But the problem with this approach is, it needs every node to possess the hardware module and SIP is implemented in the hardware module. Hardware module will not be available in the already existing mobile nodes.

C. Sprite

The basic idea of their scheme is as follows: a Credit Clearance Service (CCS) is introduced to determine the charge and credit to each node involved in the transmission of a message [5]. When a node receives a message, the node keeps a receipt of the message and later reports it to the CCS when the node has a fast connection with the CCS. Payments and charges are determined from a game theory perspective. The sender instead of the destination is charged in order to prevent denial-of-service attack in

the destination by sending it a large amount of traffic [5][6]. Any node who has ever tried to forwarding a message is compensated, but the credit a node receives depends on whether or not its forwarding action is successful – forwarding is considered successful if and only if the next node on the path reports a valid receipt to the CCS.

Three selfish actions and the corresponding countermeasures are discussed in the paper:

- After receiving a message, a selfish node may save a receipt but does not forward the message. To prevent this, the CCS should give more credit to a node who forwards a message than to a node that does not forward a message to motivate a selfish node to forward others' message. To achieve this objective, if the destination does not submit a receipt, the CCS first determines the last node on the path that has ever received the message. Then the CCS pays this last node less than it pays each of the predecessors of the last node [5].
- ii A node received a message may not report the receipt. This is possible if the sender colludes with the intermediate nodes, so that the sender can pay the node a behind-the-scene compensation, which is little bit more than the CCS will pay, and the sender still get a net gain.

In order to prevent this cheating action, the CCS charges the sender an extra amount of credit if the destination does not report the receipt so that colludinggroup get no benefit.

iii Since reporting a receipt to the CCS is sufficient for getting credit, a group of colluding nodes may forward only the receipt of a message, instead of forwarding the whole message, to its successor.

Two cases are considered: 1) the destination colludes with the intermediate nodes; 2) the destination does not collude with the intermediate nodes. In the first case, since the message is for the destination and if the destination really submits the receipt, then the intermediate nodes and the destination should be paid as if no cheating had happened. In the second case, if the destination does not report a receipt of a

message, the credit paid to each node should be multiply by a fraction, r, where r<1.

Modeling the submissions of receipts regarding a given message as a one-round game, the authors proved the correctness of the receipt-submission system using game theory. Although the main purpose of the system is for message-forwarding in unicast, it can be extended to route discovery and multicast as well. This scheme, however, may have several issues:

- 1. Receipts of each node along a path maybe submitted to the CCS at different times, making it difficult for the CCS to determine the actual payment to each node [5].
- 2. The scheme[6] is based on DSR, which includes the path in the forwarding message. A malicious node not on the path can collude with nodes on the path to forge a receipt and spoof the CCS.

2. Identifying and Isolating Selfish Nodes

This section explains methods that are used for punishing the selfish nodes. Selfish nodes are identified and isolated from the network. They are stopped from using the network services. Most of the approaches in the literature are following punishing

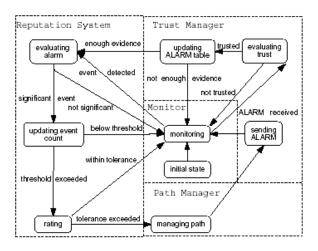
A. Watch Dog and Path Ratter

When a node forwards a packet, the node's watchdog verifies that the next node in the path also forwards the packet [6]. The watchdog does this by listening promiscuously to the next node's transmissions. If the next node does not forward the packet, then it is considered as misbehaving. The path rater uses this knowledge of misbehaving nodes to choose the network path that is most likely to deliver packets. The nodes rely on their own watchdog exclusively and do not exchange reputation information with others. F Fig 1 illustrates how the watchdog works. Suppose there exists a path from node S to D through intermediate nodes A, B, and C. Node A cannot transmit all the way to node C, but it can listen on node B's traffic [6]. Thus, when A transmits a packet for B to forward to C, A can often tell if B transmits the packet. If encryption is not performed separately for each link, which can be expensive, then A can also tell if B has tampered with the payload or the header.

Figure 2: Watchdog technology

When B forwards a packet from S toward D through C, A can overhear B's transmission and can verify that B has attempted to pass the packet to C. The solid line represents the intended direction of the packet sent by B to C, while the dashed line indicates that A is within transmission range of B and can overhear the packet transfer. The watchdog is implemented by maintaining a buffer of recently sent packets and comparing each overheard packet with the packet in the buffer to see if there is a match. If so, the packet in the buffer is removed and forgotten by the watchdog, since it has been forwarded on. If a packet has remained in the buffer for longer than a certain timeout, the watchdog increments a failure tally for the node responsible for forwarding on the packet. If the tally exceeds a certain threshold bandwidth, it determines that the node is misbehaving and sends a message to the source

notifying it of the misbehaving node. The path rater, run by each node in the network, combines knowledge of misbehaving nodes with link reliability data to pick the route most likely to be reliable. Each node maintains a rating for every other node it knows about in the network. It calculates a path metric by averaging the node ratings in the path. If there are multiple paths to the same destination, the path with the highest metric will be chosen. Nodes suspected of misbehaving by the watchdog mechanism are assigned a special highly negative value. When the path rater calculates the path metric, negative path values indicate the existence of one or more suspected misbehaving nodes in the path. If a node were marked as misbehaving due to a temporary malfunction or incorrect accusation it would be preferable if it were not permanently excluded from routing. Therefore nodes that have negative ratings should have their ratings slowly increased or set back to a non-negative value after a long timeout. In


watchdog and path rater mechanism, wireless interfaces that support promiscuous mode operation are assumed, which is not appropriate for all mobile ad hoc network scenarios. Also, the watchdog technique has the weaknesses that it might not detect a misbehaving nodein the presence of:

- 1. Ambiguous collision. As in the above example, an ambiguous collusion is the scenario that packet collusion occurs at A while it is listening for B to forward on a packet.
- 2. Receiver collisions. In the example, A can only tell whether B sends the packet to C, but it cannot tell if C receives it.
- 3. Limited transmission power, in which signal is strong enough to be overheard by the previous node but too weak to be received by the true recipient.
- 4. False misbehavior, in which nodes falsely report other nodes as misbehavior.
- 5. Collusion, where multiple nodes in collusion can mount a more sophisticated attack. For example, B forwards a packet to C but do not report to A when C drops the packet.
- 6. Partial dropping, in which a node can circumvent the watchdog by dropping packets at a lower rate than the watchdog's configured minimum misbehavior threshold.

B. Confidant

CONFIDANT stands for Cooperation of Nodes Fairness in Dynamic Ad-hoc Network, it works as an extension to on demand routing protocols [8]. CONFIDANT is based on selective altruism and utilitarianism. It aims at detecting and isolating misbehaving nodes, thus making it unattractive to deny cooperation. Nodes monitor their neighbors and change the reputation accordingly. *Reputation* is used to evaluate routing and forwarding behavior according to the network protocol. *Trust* is used to evaluate participation in the CONFIDANT meta-protocol. Trust relationships and routing decisions are based on experienced, observed, or reported routing and forwarding behavior of other nodes. CONFIDANT consists of the following components: *The Monitor*,

the Trust Manager, the Reputation System and the Path Manager. The monitor is the equivalent of a "neighbor watch", where nodes locally look for deviating nodes. The node can detect deviation by the next node on the source route by either listen to the transmission of the next node or by observation of route protocol behavior [8]. The trust manager deals with incoming and outgoing ALARM messages. ALARM messages are sent by the trust manager of a node to warn others of malicious nodes. Outgoing ALARM messages are generated by the node itself after having experienced, observed, or received a report of malicious behavior [8]. The recipients of these ALARM messages are so-called friends, which are administered in a friends list. Incoming ALARM messages originate from either outside friends or other nodes, so the source of an ALARM has to be checked for trustworthiness before triggering a reaction. The reputation system in this protocol manages a table consisting of entries for nodes and their rating. The rating is changed only when there is sufficient evidence of malicious behavior that is significant for a node and that has occurred a number of times exceeding a threshold to rule out coincidences. To avoid a centralized rating, local rating lists and/or black lists are maintained at each node and potentially exchanged with friends. The path manager performs the following functions: path re-ranking according to reputation of the nodes in the path; deletion of paths containing malicious nodes, action on receiving a request for a route from a malicious node (e.g. ignore, do not send any reply) and action on receiving request for a route containing a malicious node in the source route (e.g. ignore, alter the source).

Figure 3: Trust architecture and finite state machine withineach node.

As shown in Fig 2, each node monitors the behavior of its neighbors. If a suspicious event is detected, the information is given to the reputation system. If the event is significant for the node, it is checked whether the event has occurred more often than a predefined threshold that is high enough to distinguish deliberate malicious behavior from simple coincidences such as collisions. What constitutes the significance rating can be defined for different types of nodes according to their security requirements. If that occurrence threshold is exceeded, the reputation system updates the rating of the node that caused that event. If the rating turns out to be intolerable, the information is relayed to the path manager, which proceeds to delete all routes containing the misbehaving node from the path cache.

Although CONFIDANT can detect and isolate misbehaving nodes, it has some limitations:

- 1. It is a detection-based reputation system.
- 2. Events have to be observable and classified fordetection.
- 3. Reputation can only be meaningful if the identity of each node is persistent; otherwise it is vulnerable to spoofing attack.

C. Core

CORE (Collaborative Reputation mechanism) is a generic mechanism that can be integrated with any packet forwarding, route network function like network management and discovery, location management [7]. CORE stimulates node cooperation by a collaborative monitoring technique and a reputation mechanism. In this mechanism, reputation is a measure of someone's contribution to network operations. Members that have a good reputation can use the resources while members with a bad reputation, because they refused to cooperate, are gradually excluded from the community [7]. Each node computes a reputation value for every neighbor using a sophisticated reputation mechanism that differentiates between subjective reputation (observation), indirect reputation (positive reports by others) and functional reputation (take-specific behavior). There are two basic components for the CORE mechanism: reputation

table (RT) and watchdog mechanism (WD). The watchdog mechanism is used to detect misbehavior nodes [7]. The reputation table is a data structure stored in each node. Each row of the table consists of four entries: the unique identifier of the entity, a collection of recent subjective observations made on that entity's behavior, a list of the recent indirect reputation values provided by other entities and the value of the reputation evaluated for a predefined function. The CORE scheme involves two types of protocol entities, a requestor and one or more providers that are within the wireless transmission range of the requestor. If a provider refuses to cooperate (the request is not satisfied), then the CORE scheme will react by decreasing the reputation of the provider, leading to its exclusion if the non-cooperative behavior persists [7]. Route tables are updated in two different situations: during the request phase of the protocol and during the reply phase corresponding to the result of the execution. In the first case only the subjective reputation value is updated while in the second case, only the indirect reputation value is updated. To prevent a misbehaving entity to distribute false information about other entities in order to initiate a denial of service attack, the protocol allows only the distribution of positive rating factors. No negative ratings are spread between the nodes, so it is impossible for a node to maliciously decrease another node's reputation [7]. CORE suffers from spoofing attack because misbehaving nodes can change their network identity. The watchdog technique, a basic component of CORE, relies on the promiscuous mode operation, which is not always true (e.g. in military applications) and has some weakness. Though CORE successfully prevents false accusation that may decrease nodes' reputation maliciously, it cannot prevent colluding nodes from distribute false praise that may increase malicious nodes' reputation.

D. Token-based Approach

Token-based mechanism enforces cooperation in mobile ad hoc networks. In their proposal, each node has to have a *token* in order to participate in the network operations; its local neighbors collaboratively monitor it to detect any misbehavior in routing or packet forwarding services. The *token* is renewed via multiple neighbors after it is expired [9][10]. The period of validity of a node's *token* is dependent on how

long it has stayed and behaved well in the network. A well-behaving node accumulates its credit and renews its *token* less and less frequently as time evolves. The solution takes a self-organized approach, where neither existence of any centralized trust entity nor any a priori secret association between nodes is assumed [9][10]. There is only a global secret/public key pair SK/PK, where PK is well known by every node of the network, and SK is shared by all nodes in the network, but each node only knows a limited portion of it. The solution is composed of four components:

- Neighbor verification: verify whether each node is legitimate or malicious.
- Neighbor monitoring: monitor behaviors of each node and detect attacks from malicious ones.
- Intrusion reaction: alert the network and isolate the attackers.
- Security enhanced routing protocol: incorporates the security information into the mobile ad hoc network routing protocol.

The *token* issuing process is decentralized, and the *token* of each node is issued and signed by its k neighbors collaboratively. Before the expiration of a node's current token, the node broadcasts a TREQ (Token Request) to its neighbors [11]. When a node receives a TREQ from its neighbor, it extracts the token from the TREQ packet. If the TREQ is valid and the owner of the TREQ matches the owner of the token, it constructs a new token, signs the newly constructed token using its own share of SK, encapsulates the signed token in a TREP (Token reply), and unicasts the TREP to the node requesting the token[12]. When the node which needs to renew its token receives k TREP from different neighbors, it can combine these partially signed token into a token signed by SK. The adopted computational overhead, not to mention the high trafficgenerated by issuing/renewing a token.

1. The localized monitoring mechanism executed by each node is intrinsically inaccurate due to the inaccuracy in the information obtained by overhearing the channel.

The bootstrap phase to generate a valid *token* for each node has limitation. For example, the node needs to have at least k neighbors, suggesting the use of such mechanism in a rather dense mobile ad hoc network c

\redit based strategy in determining the expiration time of each node's token. Each time a legitimate node renews its token, the period of validity of its token increases by a fixed time interval. The authors also extend the AODV protocol into AODV-S, which is a security enhanced routing protocol. Routing security relies on the redundancy of routing information rather than cryptographic techniques [12]. Each AODV-S node maintains the list of all its verified neighbors which possess valid tokens and only interacts with its verified neighbors. When a node broadcasts a new routing update, it explicitly claims the next hop. Each node also keeps track of the route entries previously announced by neighbors. its redundancy of the routing information makes it possible for a node to prevent routing updates misbehavior. Packet forwarding misbehaviors, such as packet dropping, packet duplicating and network layer packet jamming, are also detected using an algorithm similar to the watchdog technique. Each node overhears the channel at all time and records the headers of the recent packets it has overheard. If a node detects a neighbor's misbehavior, it considers the neighbor as an attacker and broadcast a SID (Single Intrusion Detection) packet. A node is considered as an attacker if and only if m nodes out of all nneighbors have independently sent out SID packets against it. The selection of m represents the tradeoff between the prompt reaction to the attackers and the protection of legitimate modes from false accusation. When a node has received m independent SID packets against the same node, it constructs a notification of token revocation, signs the notification using its own share of SK, and broadcasts it in a GID (Group Intrusion Detection) packet. Then the first node that receives k GID packets against the same node combines them and constructs a TREV (Token Revocation), which is signed by the SK, based on polynomial secret sharing. The intrusion reaction process is triggered only when an attacker is detected. When a node receives a TREV packet and if the token is not on the TRL (Token Revocation List), it adds the token into the TRL. At the same time, each neighbor of an attacker deems the link between it and the attacker as broken and uses the path maintenance mechanism to cancel out these links. Token-based mechanism is more suitable in large and dense mobile ad hoc network and where node mobility is low than

otherwise because it presents the following drawbacks:

- 1. Frequent changes in the local subset of the network that shares a key for issuing valid *tokens* can cause high computational overhead, not to mention the high traffic generated by issuing/renewing a *token*.
- 2. The localized monitoring mechanism executed by each node is intrinsically inaccurate due to the inaccuracy in the information obtained by overhearing the channel.
- 3. The bootstrap phase to generate a valid *token* for each node has limitation. For example, the node needs to have at least k neighbors, suggesting the use of such mechanism in a rather dense mobile ad hoc network.

III. RESULTS AND DISCUSSION

Framework for Detection Of Selfishness

This Paper describes a new framework based on Dempster-Shafer theory-based selfishness detection framework (DST-SDF) with some mathematical background and simulation analysis. The DST-SDF is dedicated for MANETs based on standard routing like dynamic source routing (DSR) [12]. The main concept relies on end-to-end packet acknowledgments in the following way: every time a source node sends a packet to a destination node, it waits for a certain predefined time for an acknowledgement of the packet. If one arrives within the predefined time, the source node has reason to claim that all nodes on the path are cooperative (none is selfish). Otherwise if there are no other indications of faultiness on the path (e.g., RERR messages), the source node knows that there are selfish nodes on the path. Whenever an acknowledgment does or does not arrive in time, a special recommendation message is sent out to inform the other nodes about the detected situation (selfish or cooperative behavior on the path, respectively). Every node in the network is equipped with a dedicated component executing a DSTbased algorithm that uses received recommendation messages to evaluate the selfishness of each node. The resulting values can be used as routing metrics while selecting packets' routes in the near future.

IV. CONCLUSION

This paper examined a few methodologies for managing narrow minded nodes. Childish nodes are a genuine issue for impromptu systems since they influence the system throughput. Numerous methodologies are accessible in the writing. In any case, no methodology gives a strong answer for the childish nodes issue. The Credit based methodology gives motivating forces to the well acting nodes and just by passes the egotistical nodes in selecting a course to the destination. Be that as narrow minded hub still appreciates administrations without chipping in with others. The identification also, disconnection component disengages the childish nodes with the goal that they don't get any administrations from the system. Therefore punishing the narrow minded nodes. In any case, what happens if numerous nodes get to be narrow minded? System correspondence itself will get to be inconceivable. Along these lines we can't wipe out all the egotistical nodes from the system. Another system to diminish the impact of childishness and animating the nodes to participate in the system administrations ought to be produced. However, the overhead in accomplishing this ought to additionally be less. Since we ought to recollect that after all we are managing battery worked gadgets.

V. REFERENCES

- S.Murthy and J.J.Garcia-Lana_Aceves, An Efficient Routing Protocol for Wireless Networks, ACM Mobile Networks and Applications Journal, Special Issue on Routing in Mobile Communication Networks, pp. 183-197, October 1996.
- [2] Yanchao Zhang, Wenjing Lou, Wei Liu, Yuguang Fang, "A secure incentive protocol for mobile ad hoc networks" in Journal of Wireless Networks, Volume 13 Issue 5, pp. 663-678, October 2007
- [3] L. Buttyan and J.P. Hubaux, "Enforcing service availability in mobile ad-hoc WANs", in Proc. of IEEE/ACM MobiHoc, Boston, Aug. 2000
- [4] L. Buttyan and J.P.Hubaux, "Stimulating cooperation in self-organizing mobile ad hoc networks," ACM Journal for Mobile Networks (MONET), Vol. 8, No. 5, Oct. 2003.
- [5] S.Zhong, J.Chen, and Y.R.Yang," Sprite: A Simple, Cheat Proof, Credit based System for Mobile Ad Hoc Networks", in Proceedings of INFOCOM, Apr. 2003

- [6] S.Marti, T.Giuli, K.Lai and M.Baker, "Mitigating Routing Misbehavior in Mobile Ad-HocNetworks," in Proc. ACM MOBICOM, pp. 255- 265,2000.
- [7] Pietro Michiardi and Refik Molva, "CORE: A collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks," Sixth IFIP conference on security communications, and multimedia (CMS 2002), Portoroz, Slovenia, 2002.
- [8] Buchegger, Sonja; Le Boudec, Jean-Yves, "
 Performance Analysis of CONFIDANT Protocol:
 Cooperation of Nodes Fairness in Dynamic Ad- Hoc
 Networks," in Proceedings of IEEE/ACM Workshop on
 Mobile AdHoc Networking and Computing
 (MobiHOC). IEEE, June 2002.
- [9] Hongxun Liu, José G. Delgado-Frias, and Sirisha Medidi, "Using a cache scheme to detect selfish nodes in mobile adhoc networks " in proceedings of IEEE international Conference on Networks, pp- 7– 12, Nov. 2007
- [10] D. B. Johnson and D. A. Maltz, "Dynamic source routing in ad hoc wireless networks," in Mobile Computing, T. Imielinski and H. Korth, Eds. Norwell, MA: Kluwer, vol. 353, pp. 153–181, 1996.
- [11] Jerzy Konorski and Rafał Orlikowski "A Framework for Detection of Selfishness in Multihop Mobile Ad Hoc Networks in "Journal of telecomm- unications and information technology, pp 34-40, 2009.
- [12] G.Appenzeller, M.Roussopoulous, and M.Baker, "User-friendly access control for public network ports," in Proc. IEEE INFOCOM, pp. 699-707,1999.
- [13] H.Miranda and L.Rodrigues, "Preventing Selfishness in Open Mobile Ad Hoc Networks", October 2002. Conference on security communications, and multimedia (CMS 2002), Portoroz, Slovenia, 2002